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On vo lume- recovery  theory:  2. Test on 
Kovacs's original 6 vs t data 
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Kovacs's volume-recovery data (PVAc; 40°C) can be described by the phenomenological volume-recovery 
theory within experimental error (+2 × 10-5). The non-ideal character of the actual temperature jumps has 
a considerable effect on volume recovery, even in heating tests. Bounds and corrections for these non- 
idealities are given. © 1997 Elsevier Science Ltd. 
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1. INTRODUCTION 

In ref. 1 Kovacs's well known PVAc data 2'3 was 
discussed and it was shown that the reff paradox does 
not exist and that refr vs 6 can be described by the 
phenomenological volume-recovery theory 4-7 within 
experimental error. The present paper shows that the 
theory equally well describes the original 6 vs t curves, 
from which Kovacs calculated refl'. 

A serious difficulty is that the experimental data were 
obtained with non-ideal dilatometer experiments, i.e. 
the temperature did not jump instantaneously from 
initial value To to final value T but followed some 
transient. To make a proper comparison between theory 
and experiment, the deviations induced by these tran- 
sients should be known. However, the transients depend 
on the shape and size of the dilatometer, the type of 
chilling liquid (water or oil), the polymer filling fraction 
of the dilatometer (determines thermal diffusivity) 
and the location within the dilatometer (outer parts 
respond quicker than the core). So, the transients are 
never known exactly; the only thing known is that the 
transients are finished within some time td of the order 
of minutes. So, the best we can achieve is an upper 
bound for the deviations; such bounds are derived in 
Section 2 and it is shown (Section 3) that the deviations 
between theory and experiment remain within these 
bounds. 

2. THEORY 

Theories for volume-recovery* have been proposed by 
different authors 4-7. These theories are essentially 
equivalent, only the formalism varies from author to 
author. In this paper, we prefer to use the formalism of 
ref. 7 because: 

• it is identical to that of the theory of linear visco- 
elasticity (response function formalism); so, the many 
results of this theory can be used directly. In this 

* As usual ,  the terms vo lume  recovery  and  vo lume  re l axa t ion  are used 
in te rchangeab ly  

respect, the formalism has an advantage over that of 
the multi-parameter formalism used by Kovacs et al. 3'4. 

• it is the most general and flexible version because no 
assumptions are made about the acceleration (shift) 
function and the volume response function (except, of 
course, for trivialities). Both functions can be deter- 
mined freely from experiment. For example, in Section 
3.2, we will arrive at shift functions which completely 
deviate from those predicted by the free-volume 
model. Furthermore, no specification whatsoever is 
required about the volume response function; this 
function simply follows from the data. 

In Sections 2.2, 3.3 and 3.4 the theory will be applied 
to derive the upper bounds and corrections for the effect 
of non-ideal heating. Of course, such bounds can also be 
obtained from the other versions of the theory 4-6 and, 
actually, Kovacs considered the effect of non-ideal 
cooling/heating many years ago 4. However, he consid- 
ered cooling or heating at a constant specified rate; a 
bounding of the effects of an unknown transient of 
maximum duration t d has, to the author's knowledge, 
never been worked out in the literature. 

2.1. Basic equations 
To derive the bounds for the effect of the transients 

(Sections 2.2, 3.3 and 3.4), we require the theory of ref. 7 
in some detail. The formalism is as follows: 

(a) At small deviations from equilibrium, all relaxation 
processes, including volume relaxation must become 
linear in the sense of Boltzmann's superposition 
principle8; for experimental evidence about linear 
volume-relaxation, see ref. 9. The linear response can 
be characterized by the unit step response ~b(t), defined 
for an infinitesimal ideal temperature jump from initial 
temperature TI to final temperature T2 (see Figure 1; 
ideal means that the jump is instantaneous): 

~b(t) = (v(t) - V m l ) / [ T  2 - T1]; ideal infinitesimal jump 

(1) 

where vo~] is the equilibrium volume at T1. 
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Figure  1 
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Def in i t ion  of  vo lume  response  func t ion  

For an arbitrary temperature programme T(t) starting 
at t = 0 from an equilibrium state at T l, the Boltzmann 
integral (linearity principle) yields: 

v(t) - v~l = I i  d T / d ~ ¢ ( t  - ~)d~ (2) 

where ~ is an integration variable on the t-time scale. 
Often:, volume relaxation is characterized by the 

deviation from the equilibrium volume v~2 at final 
temperature T2. According to equation (1) and Figure 1, 
this is given by: 

v - v~2 = [~b~ - ~(t)](Tl - 7"2) (3) 

(b) The linearity range for volume relaxation is limited to 
temperature jumps much smaller than 1°C9; for larger 
jumps, the relaxation is highly non-linear. The theory 
assumes that the non-linearities are due to accelerations/ 
decelerations of the relaxation by a factor a (acceleration 
function) which only depends on temperature and 
volume (generalization of the principle of thermo- 
rheological simplicity). This implies that we can define 
reduced time A given by*: 

I i  a A = (~)d~ (4) 

where a depends on time via the changes in temperature 
and volume. Note that a is defined as increasing when 
relaxation is speeded-up (higher temperature or volume). 

The reduced-time concept removes the non-linearities. 
On the A-time scale, we have (cf. equation (2)): 

J~ dT/d(~b(A v(A) - yogi = - ~)dff (5) 

where ~ is an integration variable on the reduced A-time 
scale and ~ the response function defined by equation (1). 

In ref. 7 the volume response was defined in terms of 
the actual volume changes. Kovacs used a normalized 
parameter 6 = (v - vow)/vow, where the abbreviation vo~ 
denotes the equilibrium volume vow2 at final temperature 
T2 (this abbreviation will be used frequently in this 
paper). To harmonize our notation with that of Kovacs, 
we define the response function: 

0(A) = [~b~ - ~b(A)]/v~ (6) 

Equation (3) then gives: 

6(A) = [v(A) - vo~]/v~ = O(A)[T1 - / '2 ] ;  ideal jump 

(7) 
It should be realized that 0 is defined as the theoretical 

response function for an ideal temperature jump. Real 
volume relaxation is measured with dilatometers having 
thermal inertia. Thus, the actual temperature jumps are 

* In ref. 7, A was cal led the effective t ime; the present  n a m e  is used  
to avo id  confus ion  wi th  K o v a c s ' s  effective re laxa t ion  t ime rer f 

not ideal and the response may deviate from 0. To 
distinguish actual from ideal response the experimental 
response is denoted by: 

, b ( t )  = 6 ( t ) / [ r l  - r2] (8) 
In the sequel, • is considered as a function of t or A; 

only as a function of A. Equations (7) and (8) yield: 

• (A) = 0(A); for ideal jumps (8a) 

2.2. Non-ideal temperature jumps* 
We consider a non-ideal jump to final temperature 

T, starting from thermodynamic equilibrium at initial 
temperature To (in the sequel, we use this notation 
instead of T] and T 2 as in Figure 1). Equations (5) and (6) 
yield: 

/ ~(A) = - dT/d¢0(A - ¢)d¢; A > Ad (9) 
0 

where ( is an integration variable in the A-scale and Aa 
the thermal equilibration time on the A-scale (td is the 
equilibration time on the real t-time scale; Ad can 
be related to t a by equation (4)). Combining equations 
(8) and (9), we find: 

• (A) = h ( ( ) 0 ( A-  ¢)d~; A > Ad (10) 

where the thermal transient is given by: 

h(A) = [ d T / d A ] / ( T -  To) (11) 

Obviously 

i ~d h(~)d( = 1 (12) 
0 

As usual in relaxation theory12, we assume that 0(A) is 
a positive, total monotonic decreasing function of A. 
This means: 0 > 0, dq~/dA < 0, d20/dA 2 > 0, etc. Such 
functions can be written as a sum of decaying positive 
exponentials (see also pp. 119-122 of ref. 7). Further- 
more, since the dilatometer is subjected to a jump in 
the outside temperature, function h in equation (11) will 
be positive. Altogether, this means: 

? J? • (A) = h(()0(A - ~)d~ _> ~b(A) h(~)d~ = 0(A) 
0 

(13) 

In the same way, we find: ~(A) _< 4~(A - Ad), thus: 

0(A) < ~(A) < 0(A - Ad) (14) 

o r  

(I~(A) = ~ ( A  - Ai) ;  with 0 _< Ai _< Ad 

in which Ai may vary with A. 
In the same way, we find from equation (10): 

= h ( ¢ ) [ - 8 ( A -  ¢)]d¢; A > Ad 
0 

(15) 

(16) 

in which the dot denotes differentiation with respect 
to the argument. Since -q~ is positive and decreasing and 
h positive, we obtain as before: 

-0(A) < -¢~(A) < -0(A - Ad) (17) 

* The  results  o f  Sect ions 2.2 and  2.3 are based  on refs 10 and  11 
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o r  

4) (A)=¢(A-Aj ) ;  w i t h 0 5 A j < A  d (18) 

where Aj may vary with A and be different from Ai. 
Because of the total monotony (see above), similar 
formulae hold for all higher derivatives of ~. Moreover, 
since h(~)>  0 for cooling as well as for heating, 
equations (15) and (18) hold in both cases. 

The difference between • (non-ideal jump) and ¢ 
(ideal jump) can be written as: 

m : (I)(/~) -- (~(,~) : ¢()~ -- ~ i )  -- ¢ ( ~ )  ~ -[Ai/A]dCdln A 

With equation (15), we obtain: 

0 _< A _< [Ad/A][-d¢/dlnA] (19) 

The rate of ¢ can be connected to that of ~I,. Equation 
(17) gives: 

- d ~ / d  In A = -A~(A) _> -A ¢(A) = - d ¢ / d  In A (20) 

So, equation (19) can be replaced by: 

0 _< A _< [Ad/A][-d~/dlnA ] (21) 

Consequently, if shift function a(6) is known, we can 
calculate A from t and 6(t), determine ¢I)(A) and d ~ / d  In A 
and find the maximum difference, A, between non-ideal 
and ideal heating jumps. A (generally too large) upper 
bound for A can be found without having any detailed 
knowledge about shift function a(6). Since, upon 
heating, 6 and a(6) increase with time, we have: 

I'0 a [ A = (~)d~ = a(t) [a(~)/a(t)]d~ <_ ta(t); heating 
0 

(22) 

So, A/t will be smaller than a(t). The increase of a with 
time also implies (see equation (16) of ref. 1): 

Ad/A _< td/t; heating jumps (23) 

Furthermore we have the identity (see equation (4)): 

d ~ / d  In t = td~/dt = ta(t)d~/dA = a(t)[t/A]d~/dln 

(24) 

Combining equations (20), (22) and (24), and remember- 
ing that the time derivatives of ¢ and q~ are negative, we 
find: 

- dq , / d  In t _> - d ~ / d l n  A _> - d ¢ / d  In A; heating 

(25) 

The first part of this inequality is due to the non-linearity 
of the volume-recovery process (a(6) increases with time) 
the second to the non-ideality of the temperature jump. 
Combining equations (21), (23) and (25), we finally 
obtain: 

0 < A < [td/t][-d~/dlnt]; heating (26) 

which gives a direct estimate of A from the data on the 
t-time scale. If a(6) increases strongly, A is overestimated 
correspondingly. 

2.3. Course of A, ~ and (a during volume relaxation 
In a heating experiment, a(6) increases with time; after 

quenching it decreases. Since a(t)= dA/dt (equation 
(4)), this leads to the A vs t behaviour shown in Figure 2a. 
For ideal jumps, this translates into the ff vs t behaviour 

i 
a 

T~n cS" T T 

° ~  d~X" 

*t 

b 

ro 'L . ._~ .~ . ,  -to d~,. 

° k ~ t  

Figure 2 (a) Course of reduced time A vs real time t after an ideal or 
non-ideal jump from thermodynamic equilibrium at T o to final 
temperature T. (b) Corresponding course of • vs log t for ideal jumps 
( - - )  and a non-ideal jump (- - -) 

a(t) 

1 . . . . . . . . . . .  

deer. T o 

Figure 3 Course of a(~)/a(t) vs ~ for ideal jumps from thermo- 
dynamic equilibrium at T o to final temperature T 

shown in Figure 2b; equation (8) then yields: 

• (t) = ¢[A(t)]; ideal jumps (27) 

For non-ideal jumps, q~ will be somewhat larger that ¢, 
both for heating and cooling. In Figure 2b, the course for 
a non-ideal jump has been indicated by a dashed curve. 
Figure 2b shows that, for ideal jumps, the • vs In t curves 
steepen with decreasing To (heating) and flatten with 
increasing T o (cooling). This follows from equation (22), 
which yields: 

d ~ / d  in A/d~ /d  In t = A/[ta(t)] = [1/t I o a(~)/a(t)d~ 

(28) 

The course of a({)/a(t) is given schematically in 
Figure 3; the integral in equation (28) obviously increases 
with increasing To. Now consider jumps to the same final 
temperature T from different initial temperatures T 0. 
Since the jumps are ideal, a fixed (given) value of q~ 
implies a fixed value of ¢ (equation (27)) and thus fixed 
values of A and d ~ / d  Ink = d¢ /d  Ink. Consequently, the 
increase of the integral of equation (28) with increasing 
To is accompanied by a decrease of - d ~ / d  Int. 

3. TEST ON KOVACS'S ~5 VS t DATA 

We will now test the theory on Kovacs's original volume- 
recovery curves for PVAc at 40°C (Figure 4). Table 1 
gives the &values read from a magnified version of 
Figure 4; the t-values are equidistant on a log t scale with 
a spacing of 0.1 decade. For reasons explained below, 
Table 1 is restricted to the heating data and to times 
t > 0.02h. Figure 5 gives the q~ vs log t curves calcu- 
lated from Table 1; the steepening with decreasing T o 
(Figure 2b) is clearly visible. 

Testing of the theory means: (i) finding the proper 
shift function a(6); (ii) calculating reduced time A(t) 
(equation (4)) for each 6 vs t curve and constructing the 
q,(A) = 6(A)/(To - T) vs A curves; (iii) verifying whether 
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Figure 4 Volume recovery at T = 40°C for PVAc after up- and down- 
quenches from various initial temperatures To; reproduced with 
permission from Figure 17 of ref. 2 

Table 1 103 6 vs t as read from Figure 4 

To (°C) 

t (h) 10log t 37.5 35.0 32.5 30.0 

0.0200 -1.70 -0.395 -1.269 -2.704 -4.174 
0.0251 -1.60 -0.329 -1.132 -2.576 -4.122 
0.0316 -1.50 -0.253 -0.977 -2.418 -4.033 
0.0398 -1.40 -0.178 -0.799 -2.236 -3.944 
0.0501 -1.30 -0.141 -0.645 -2.046 -3.838 
0.0631 -1.20 -0.086 -0.487 -1.793 -3.704 
0.0794 -1.10 -0.046 -0.349 -1.530 -3.546 
0.1000 -1.00 -0.023 -0.227 -1.214 -3.342 
0.1259 -0.90 -0.016 -0.135 -0.914 -3.082 
0.1585 -0.80 -0.000 -0.053 -0.614 -2.697 
0.1995 -0.70 -0.016 -0.340 -2.293 
0.2512 -0.60 -0.000 -0.176 -1.756 
0.3162 -0.50 -0.069 -1.144 
0.3981 -0.40 -0.015 -0.565 
0.5012 -0.30 -0.000 -0.174 
0.6310 -0.20 -0.020 
0.7943 -0.10 -0.000 

0.4 

( 1 ) ( t ~ ,  10 a *C "1 
/0-/ 

T 
0.2 

" \  3~  X 
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\ 
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Figure 5 • vs log t for the heating data of Figure 4. Error bars denote 
the experimental accuracy in • of ± e / ( T  - To) with e = 2 × 10 -5 

the • vs A curves obtained for different T0's superimpose 
for A-values much larger than Ad. If  superposition 

5 1 succeeds within experimental error (+ e = 4-2 x 10- ) , 
the theory may be said to work. 

As explained in ref. 1, the curves after cooling strongly 
depend on the non-ideal aspects of the quenching 

process. We therefore restrict ourselves to the heating 
data, but even these are affected considerably by the non- 
ideality of  the temperature jumps. 

3.1. The shortest reliable measuring time 
According to Kovacs 13, thermal equilibration time td 

was about 0.02h for Bekkedahl dilatomers in thermo- 
stats filled with water; for his other dilatometers and for 
oil baths, td was a factor of  1.5-3 larger. Kovacs's data 
indeed show deviations at short times, e.g. in Figure 4, 
the lowest curve (drawn by Kovacs) deviates by 
6.5 x 10 -5 from the experimental point at t = 0.01 h. 
Similar deviations are seen at other places2'13'14; these 
clearly reflect the non-isothermal conditions at short 
times. 

In the above example, the volume deviation of 
6.5 x 10 -5 at 0.01h corresponds to a temperature 
deviation of  0.3°C [in view of the short times, we use 
the short-time (glassy) expansivity ag = 2.4 x 10-4/°C 
from Table 1 of  ref. 2]. The temperature jump being 
10°C, we see that, after 0.01 h, the jump is completed for 
97%. 

The height of the mercury column (dilatometer 
reading) is determined by the average temperature 
in the dilatometer. For  such cylindrical tubes, the 
average temperature varies with t according to a single 
exponential: 

R = IT(t) - T]/[To - T] ,~ exp(-t/~-) (29) 

for the last phase (last 30%) of the transientlS; during 
the earlier phases, we need more terms of  the series. 
With R = 0 . 0 3  and t = 0 . 0 1 h ,  we find T = - 0 . 0 1 /  
ln(0.03) = 0.01/3.5 = 2.9 x 10-3h = 10.2s. This com- 
pares reasonably with the estimates made in ref. 16; for 
a cylindrical dilatometer (mercury-glass-polymer) with 
polymer filling of  50% and outer diameter of 1 cm, we 
calculated a T of  13 s. 

To get the volume within experimental error 
(+e  = +2 x 10-5), the deviation in temperature should 
be less than 0.083°C (= e/ag = 2 x 10-5/2.4 x 10-4). 
For  a jump of 10°C, this requires that t > 4.87-; for 
smaller jumps the times required are slightly smaller. 
Between 0.01 and 0.02 h, t / r  increases from 3.5 to 7 and 
the temperature deviation reduces by a factor of 
e35=  33. At 0.02h, it will be much smaller than the 
required value of 0.083°C. So, Kovacs's claim of thermal 
equilibrium after 0.02h looks quite reasonable. We 
therefore consider the points for t _> 0.02 h as reliable 
and disregard those at shorter times. 

3.2. Superposition of the • vs A curves for data points 
which are hardly affected by the non-ideality of  the 
temperature jump 

The superposability is now tested as follows: we start 
with some reasonable function log a(6) and calculate A 
vs t with equation (4) and the 6 vs t data of  Table 1. Next 
we plot q~ vs A and check whether the curves for different 
T0's superimpose. We take the following precautions: 

• the deviation, A, due to non-ideal heating is estimated 
with equation (21). For  Ad we substitute the smallest A 
value, viz. initial value A1 = a(0.02 h) x 0.02 h. This 
A 1 is certainly greater than Ad since I d is less than 0.02 h 
and a(0.02h) exceeds the a(t) values for t < 0.02h. 
Since A 1 > Ad, the estimated A's are too large; so, we 
remain at the safe side. 
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. we only consider points for which the volume 
error [@ - ¢](T - To) = A(T  - T@, due to non-ideal 
heating, is less than e = 2 x 1 0 - ;  all other points 
are rejected. 

For  the shift function we use Kovacs's equation]: 

loga(6) = c6/[1 + d6] (30) 

and we optimize c and d. According to the free-volume 
model, d should be positive (if Doolittle's b-factor is 
taken as unity, we have d =  l / f  x, where f r  is the 
equilibrium free-volume fraction at T). For  reasons 
which become clear later, we also consider negative 
d-values. 

A simple PC-programme was written that uses the 
data of  Table 1 as input; for given c and d, the cb vs A 
curves then follow straightforwardly. Integration of  
equation (4) was done numerically in steps of  0.01 
decade. Over each interval (0.01 decade), a(t) was 
approximated by a power law, the power being found 
from c, d and the experimental 6-values. To get the 
6-values for this narrow spacing (0.01 decade), the data 
of Table 1 (spacing of  0.1 decade) were interpolated by 
3-point forward differences on the log t scale (second 
degree polynomial). 

The scatter around the mastercurve was calculated 
by the computer programme. The ~(A) curve obtained 
for To = 30°C was taken as reference; compared to 
the curves for other T0's, it extends over the largest 
A-interval and is the most accurate (note that errors in 
decrease with increasing difference T -  To). Next, the 
programme compares the ¢(A) curves for other T0's 
with the reference curve for To = 30°C and determines 
the differences. The error +e in the 6-values leads to 
an error ±e /10  in the C-values for the reference 
curve (To = 30°C); for other T0's, the errors in @ are 
+E/(T--To) .  To remain within experimental error, 
the difference between the ~(A) curve for To and the 
reference curve must be less than +el1/10 + 1/ (T  - To) ]. 
In the computer programme, we multiplied each 
~-difference by T -  T O in order to get the difference 
in terms of volume (~ is volume/°C). To remain within 
experimental error, this difference should be less than 
+~[1 + ( T -  T0)/10 ] = +1.25e for T O = 37.5°C and 
+1.75e for To = 32.5°C. In the computer programme 
we determined the maximum difference ( A ~ ( T -  To)) 
for all T0's simultaneously, so, we did not discriminate 
between points originating from different T0's. As an 
average, we therefore take +1.5~ = +3 x 10 -5 as the 
expected scatter in • due to the experimental errors in 6. 

The results are shown in Figure 6. The scatter is plotted 
vs d with c as a parameter. The horizontal dashed line at 
3 × 10 -5 is the experimental accuracy discussed above. 
We notice the following: 

(1) For  the free-volume model, d must be positive 
and the scatter remains above 5 x 10 -5 (Figure 6). In 
this model, Doolittle's b-factor is often set equal to unity; 
this links d and c by i: 

d = x/(2.303c) (31) 

Using equation (31), we get the scatter curve of  Figure 7. 
Obviously, the scatter is minimum for c = 640, which 
corresponds to fx  = l i d  = 0.026. These are quite usual 
values, close to those used to construct the mastercurve 
of Figure 9 ofref .  1 (c = 600;fx = l i d  = 0.027) and also 
close to those used by Kovacs in drawing the dotted log a 

10 

I 
5 

1.6 1.4 1.2 1.0 

1.0 0.;'5 0.65 0.55 

-e0o 
T 

-4OO -200 0 100 

Figure 6 Max imum (absolute) deviation between the reference curve 
(To = 30°C) and the ¢(A) curves for To = 32.5, 35 and 37.5°C; for 
explanation see text 

10 

m4uL 
sc.atlM, 

lO-S 

I 
$ 

15,  - 
- -  - e x p . ~  

6OO 70O 
- ¢  

Figure 7 M a x i m u m  scatter in the mastercurves for the free-volume 
model with Doolittle's b-factor equal to unity [d = ~/(2.303c)] 

vs 6 curve in Figure 6 of ref. 3 (e = 670 and fT = 
1/d = 0.028). 

The resulting mastercurve is shown in Figure 8 (curve 
A). Figure 6 reveals that a substantial reduction of  
the scatter is only possible with negative d-values. So, 
with the free-volume model (positive d's) a scatter of  
+5 x 10 5 (curve A) is the best we can achieve; the 
scatter remains about 60% larger than expected from 
experimental error. 

(2) Negative d-values. Figure 6 shows that the scatter 
can be reduced below experimental error by taking 
negative d-values. For  c = 1 0 0 0  and d = - 1 3 0  
(k = l / d  = -0.077), the scatter drops to 3.4 x 10 -5, for 
e = 1800 and d = -480  (k = 1/d = -0.00208) to 1.7 x 
10 -5. The corresponding mastercurves are shown in 
Figure 8; the one for c = 1800 is almost perfect. Our 
theory 7 does not make assumptions about shift func- 
tion a(6); so, negative d-values are admissible. Such 
values, however, violate the free-volume model and 
lead to the unusual variation of log a with 6 shown 
in Figure 9. For the free-volume model, log a vs 6 shows 
a slope that (slowly) increases with decreasing 6; for 
negative d values, we have the reverse. It should not 
be excluded that this (unusual) effect is real and related 
to Angell's ~7 finding that, for inorganic glasses, the 
free-volume model breaks down just above Tg: 
approaching Tg from above, the rapid changes of 
viscosity with temperature (free-volume effect) ter- 
minate and the behaviour changes to Arrhenius (see 
also ref. 18). 
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Figure 8 Mastercurves for cb(A), obtained as described in the text. Curve A: free-volume model with b = 1 (d = x/(2.303c)), c = 640 and l i d  = 0.026. 
Curve B: c = 1000 and 1/d = -0.077; curve lifted by 0.1 x 10 -3. Curve C: c = 1800, 1/d = -0.00208; curve lifted by 0.2 x 10 -3. The vertical bars give 
the errors -4-e/(T - To) in 4;  the largest bars refer to T O = 37.5°C; the smallest to T O = 32.5°C and the medium ones to T O = 35°C. The dots, without 
error bar refer to To = 30°C; the size of the dots equals the error. The mastercurves B and C are within experimental error; for A the scatter exceeds 
experimental error by 60% 

0 

'7" 
-2 ~ k = -0.00208- 

=1 -o.ooy 
f c  = 640 k = 0.026 

-.4 (free-volume model) 

"8 ,  10 "s 
I I I I I 

-6 -4 -2 0 

Figure 9 Log a vs 6 relations as used in the construction of the 
mastercurves of Figure 8; the c and k = 1/d parameters are indicated 

Conclusion. The theory works; we can construct 
mastercurves for (b(A) within experimental error. How- 
ever, the required log a vs/5 relationships are not com- 
patible with the free-volume model. With this model, 
the scatter remains 60% larger than as expected from 
experimental accuracy. 

Remarks. (a) The negative d values should not be 
considered as some peculiar result of the superposition 
method. In fact, the unusual shifting behaviour directly 
follows from the experimental data. Let us assume for 
a moment that we have ideal temperature jumps. 
According to equations (4) and (8), the volume relaxa- 
tion rate is then given by: 

d~/d t  = a(6)d~/dA = a(/5)d~/dA; ideal jumps (32) 

Let us now compare points at equal ff = / 5 / ( T o -  T) 
originating from different T0's. Let the rates, d~/dt ,  be 
given by r = rl, r2, . .etc. and the 6's by/5 = i51,/52 . . . . .  
etc. Equal ff's imply equal ~b's, A's and thus equal rates 
d~/dA. So, at equal qb, rate d~/d t  varies in proportion 
to a(/5) (equation (32)). Therefore, by plotting log r vs the 
corresponding/5 (rl vs ~Sz, etc.) we directly obtain log a, 

except for some constant that can be found from the 
condition that log a = 0 for 6 = 0. So, for ideal jumps, the 
shift function directly follows from the experimental 
data 1°,11. Following this procedure and taking care of 
the non-ideal heating effects and the (large) errors in rate 
at ~5 ~ 0 (see ref. 1), we indeed found a log a vs ~ curve 
with a slope increasing with /5 (negative d-value). 
However, with Kovacs's data (Figure 4), the accuracy 
of this method is limited; for small t-values (large 6's), 
the rates are influenced by the non-ideal heating effects, 
for long times, the rates are unreliable because of the 
small ~'s I . 

(b) Unfortunately, Kovacs's data were all in the 
non-linear range (considerable variation of shift factor 
log a). Consequently, log a(/5) and q~(A) cannot be deter- 
mined independently. The resulting ~(A) depends on the 
log a(6) relationship chosen and we cannot decide which 
of the three loga(/5) relations of Figure 9 is the best, 
although negative d-values seem preferable. This ambi- 
guity can be removed by additional volume-relaxation 
tests with very small temperature jumps (<< I°C) as 
described 9 by Goldbach . The non-linear effects then 
(almost) disappear; shift factor a remains about unity, A 
becomes equal to t and the experimental ~(t) equals the 
theoretical response function ~b(),). So, ~b(A) can be deter- 
mined unambiguously; shift function log a then follows 
from the non-linear recovery at larger amplitudes. 

3.3. The effect of non-ideal heating on the relaxation 
curves 

As can easily be verified, Figure 5 contains 2-3 times 
more data points than each of the mastercurves of 
Figure 8. The missing points ( ½ - 2 of the total) are those 
rejected because the effect of non-ideal heating, A, (see 
eqn 21) exceeds experimental error. The inevitable 
conclusion follows that the original data (Figures 4 and 
5) must have been affected considerably by these non- 
idealities. An illustration is given in Figure 10. It refers to 
mastercurve A of Figure 8 (free-volume model), but now, 
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Figure 10 Mastercurves for ff)(A) as obtained with the free-volume model (as curve A of Figure 8; c = 640 and l/d = 0.026). Now, all data points of 
Figure 5 are given, including those (open symbols; rejected in Figure 8) affected by the non-ideality of the heating process by more than experimental 
error (equation (21)). The filled symbols are the points of Figure 8. Error bars (+e/(T - To)) with e = 2 x 10-~are given for the different T0's. For 
further explanation see text 

o! ix, x 

F i g u r e  11 On the evaluation of the integral of equation (10); for 
explanation see text 

all data points of Figure 5 are included. Clearly, the ~(A) 
curve for T0's of  32.5-37.5°C lags behind that for 
T O = 30°C. We return to these differences in the next 
section; here, it suffices to say that the non-idealities in 
the heating process have a large effect on volume-recovery. 
I f  ignored 4:9-3°, the data are spoiled and little can be 
concluded about the applicability o f  the phenomenological 
volume-recovery theory. 

It  should be realized that the distinction between 
open and closed symbols in Figure 10 was made on the 
basis of  equation (21), i.e. before the mastercurves of  
Figure 8 were constructed. So, we did not reject points 
because of  bad fitting; the choice was made indepen- 
dently and beforehand. In this respect, it is gratifying 
that the curves for 30 ° and 32.5°C roughly merge where 
the symbols change from open to closed (32.5°C curve). 
For  T o = 35 ° and 37.5°C, merging occurs earlier which 
reflects the fact that equation (21) overestimates the 
errors due to non-ideal heating, particularly for higher 
T0's (next section). 

3.4. Correction for the non-ideal heating effects 
We start f rom equation (10) which shows that (I,(A) is 

some average of  ~ over the interval between A - Ad and 

A, the weighing function being h((). We further have: 

t > td = 0.02 h ~ %- (33) 

where ~- ~ 10 s denotes the time constant of  the thermal 
transient (see equation (29)). In a heating experiment, 
a(6) increases with t, thus: 

A > Ad _> 7A, (34) 

where A, is the A-value corresponding with t = T. 
As shown in Figure 11, h(() decreases rapidly with (. 

On the t-time scale, h(t) approximately obeys the 
exponential form of  eqn (29). Since a(6) increases with 
t, the A vs t plot is upwardly curved (Figure 2a); so, the 
decrease in h is even sharper on the A-time scale than on 
the t-time scale. As a rough estimate we write: 

h(( ) /h  o = e x p ( - ( / A ~ )  (35) 

where h0 follows from equation (12): 

h0 = 1/{A~[1 - exp(-Ad/A~)]} ~ 1/A~ (36) 

in which the exponential is about  zero because of 
equation (34). 

For  ( =  Ao, h/ho is less than e -7 =0.0009;  for 
( = ½Ao, h/ho is less than e -35 = 0.03. So, in equation 
(10), most  of  the contribution to ~(A) originates from 
(-values smaller than ½Ad. For  such small (-values we 
may use the approximation shown in Figure 11: 

~b(A - () ~ ~b(A) - ~ ( A )  (37) 

Substitution into equation (10) yields: 

• (A) ~ ~b(A) - el~(A) ~ ~b(A - el) (38) 

where el is a constant given by: 

el = (h( ( )d~ (39) 
0 

Equation (38) resembles equation (15), however e] is a 
constant whilst Ai may vary with A. Equation (38) shows 
that non-ideal heating causes a constant shift e] on the 
linear A-time scale; on the log time scale, the displace- 
ment  decreases with increasing A. 
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Figure 12 As Figure 8, but now corrected for the non-ideal heating 
effects (equation (38)) and all points with A > 2.5A1 included 
(remember that A1 > A d; note that we took the slightly larger parameter 
of  2.5 instead of  the value of  2 discussed below). The points for 
To = 30°C were not corrected; for the other To's, the correction ej was 
determined by shifting the data to optimum fit. A, B and C have the 
same meaning as in Figure 8; as before curves B and C were lifted by 0.1 

3 o and 0.2 x 10- , respectively. For T O = 32.5, 35 and 37.5 C, the el 
values (in h) were, respectively, 0.002, 0.0023, 0.00043 for A; 0.004, 
0.0009 and 0 for B, and 0.004, 0, and -0.00024 for C 

The accuracy of equation (38) was investigated by 
considering model functions for ¢(A), i.e. the K W W  
function ~b(A) -- ~b 0 exp(-(A/r0)~) .  We varied/3 between 
0.2 and 1 and A~/ro between 0.01 and 100. We further 
used equation (35) to describe the heating process. The 
errors in equation (38) turned out to be less than 0.002¢0 
for A _> 2), d. Since ¢o ~ 4.5 x 10-4/°C (cf. Figure 10 and 
remember that 00 equals Aa  = 4.5 x 10-4/°C 2) the 
errors in q5 will be less than 10-6/°C. In the experiments 
of Figure 10 the maximum value of  T - T O was 10°C, so 
the experimental error in q) was +e/10 = 4-2 x 10 -6 
which is larger than the approximation error. Conse- 
quently, the first-order approximation (equation (38)) 
will be within experimental error for A _> 2Ad. 

The experimental results are shown in Figure 12; the c- 
and d-values were the same as Figure 8 and the correction 
factors e 1 are given in the figure caption. The fit is quite 
good, which means that the (rather large) effects of non- 
ideal heating can be described satisfactorily by the theory. 

Corollary. Equation (38) also explains why the 
effects of  non-ideal heating could be neglected in con- 
structing the mastercurve of  Figure 9 of  ref. 1. The quan- 

! 
tities plotted against each other were y = rerf = a(6)ref r 
(vertical axis) and x = 6 / [ T o - T ]  (horizontal axis) 
where reff is defined 1 as -6/[d6/dt]. For the heating 
experiments, equations (8) and (38) give: 

x = ~(A) = ~ ( A -  el) (40) 

1/y = - [ d  ln(-6)/dt]/a(6) = - d  In ¢ /dA 

= - d i n  O(A - el)/dA 

= - d l n O ( A -  e l ) / d ( A -  el) (41) 

where the change from d. . /dA to d.. /d(A - el) is allowed 
because e~ is constant during volume relaxation (at least 
for A > 2Ad). With: 

A' = A - el (42) 

Equations (40) and (41) change into: 

x = 0(A') (43) 

1/y = - d  In 0(A')/dA' (44) 

In the Appendix ofref.  1 we showed that there is a unique 
relationship between - d  In 4)/dA and 0: 

- d  In 0(A)/dA = F{~b(A)} (45) 

in which F is some function. The same relationship of 
course holds for 0(A') and dln~b(A')/dA', i.e. for the 
experimental quantities x and 1/y (see equations (43) and 
(44)). So, the effect of non-ideal heating on the y vs x plot 
(Figure 9 of  ref. 1) disappears by virtue of  the constancy 
of el. 

4. DISCUSSION A N D  CONCLUSIONS 

The following conclusions can be drawn: (1) The 
volume-recovery curves (6 vs t; PVAc, 40°C; heating) 
from which Kovacs calculated the effective relaxation 
time rerf can be described by the phenomenologi- 
cal volume-recovery theory within experimental error 
( + 2 ×  10-5). (2) The volume-recovery curves are 
strongly influenced by the non-ideality of  practical 
temperature jumps (thermal transients lasting 50-70 s), 
even for heating. (3) The deviations due to non-ideal 
heating can be described by the theory. 

So, the present results support the conclusion of ref. 1 
that there is nothing paradoxical in Kovacs's volume- 
recovery data. It is also clear now why the many 
attempts 4'19-3° to describe Kovacs' data quantitatively 
had limited success. In all cases the long-time errors 
in  "reff 1 as well as the short-time deviations due to non- 
ideal heating were neglected. This spoils the data and no 
definitive conclusions could be drawn about the applic- 
ability of the phenomenological theory. 

A final remark concerns the question whether the 
original 6 vs t (Figure 4) data can be reproduced from 
shift function loga(6) and response function 0(A) of  
Figures 8 and 9. In view of  the strong non-linear effects 
this is not self-evident; for a non-linear process, success 
in one direction does not automatically guarantee 
success in the reverse direction. With own data on 
polystyrene, this two-way analysis has been made long 

11 ago . Functions loga(6) and 0(A) were determined as 
described in the present paper; from this, we could 
successfully describe the volume recovery on real t-time 
scale. However, the non-idealities in the temperature 
jumps were not corrected for, so the check was limited to 
t >> td. We wish to perform this two-way comparison 
with Kovacs's accurate data and take the real thermal 
transients into account, also for cooling. This work is 
reserved for a future paper. 
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